Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add filters








Year range
1.
J. venom. anim. toxins incl. trop. dis ; 30: e20230043, 2024. graf
Article in English | LILACS, VETINDEX | ID: biblio-1534803

ABSTRACT

Background: The bioactive peptides derived from snake venoms of the Viperidae family species have been promising as therapeutic candidates for neuroprotection due to their ability to prevent neuronal cell loss, injury, and death. Therefore, this study aimed to evaluate the cytoprotective effects of a synthetic proline-rich oligopeptide 7a (PRO-7a; <EDGPIPP) from Bothrops jararaca snake, on oxidative stress-induced toxicity in neuronal PC12 cells and astrocyte-like C6 cells. Methods: Both cells were pre-treated for four hours with different concentrations of PRO-7a, submitted to H2O2-induced damage for 20 h, and then the oxidative stress markers were analyzed. Also, two independent neuroprotective mechanisms were investigated: a) L-arginine metabolite generation via argininosuccinate synthetase (AsS) activity regulation to produce agmatine or polyamines with neuroprotective properties; b) M1 mAChR receptor subtype activation pathway to reduce oxidative stress and neuron injury. Results: PRO-7a was not cytoprotective in C6 cells, but potentiated the H2O2-induced damage to cell integrity at a concentration lower than 0.38 μM. However, PRO-7a at 1.56 µM, on the other hand, modified H2O2-induced toxicity in PC12 cells by restoring cell integrity, mitochondrial metabolism, ROS generation, and arginase indirect activity. The α-Methyl-DL-aspartic acid (MDLA) and L-NΩ-Nitroarginine methyl ester (L-Name), specific inhibitors of AsS and nitric oxide synthase (NOS), which catalyzes the synthesis of polyamines and NO from L-arginine, did not suppress PRO-7a-mediated cytoprotection against oxidative stress. It suggested that its mechanism is independent of the production of L-arginine metabolites with neuroprotective properties by increased AsS activity. On the other hand, the neuroprotective effect of PRO-7a was blocked in the presence of dicyclomine hydrochloride (DCH), an M1 mAChR antagonist. Conclusions: For the first time, this work provides evidence that PRO-7a-induced neuroprotection seems to be mediated through M1 mAChR activation in PC12 cells, which reduces oxidative stress independently of AsS activity and L-arginine bioavailability.(AU)


Subject(s)
Oligopeptides/adverse effects , Receptors, Muscarinic/chemistry , Crotalid Venoms/chemical synthesis , Proline , Oxidative Stress
2.
J. venom. anim. toxins incl. trop. dis ; 27: e20200171, 2021. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1279405

ABSTRACT

Background Solitary wasp venoms may be a rich source of neuroactive substances, since their venoms are used for paralyzing preys. We have been exploring bioactive constituents of solitary wasp venoms and, in this study, the component profile of the venom from a solitary scoliid wasp, Scolia decorata ventralis, was investigated through a comprehensive analysis using LC-MS. Two peptides were synthesized, and their neuroprotective properties were evaluated. Methods A reverse-phase HPLC connected to ESI-MS was used for LC-MS analyses. Online mass fingerprinting was performed from TIC, and data-dependent tandem mass spectrometry gave the MS/MS spectra. The sequences of two major peptide components were determined by MALDI-TOF/TOF MS analysis, confirmed by solid phase synthesis. Using the synthetic peptides, biological activities were assessed. Cell integrity tests and neuroprotection analyzes using H2O2 as an oxidative stress inducer were performed for both peptides. Results Online mass fingerprinting revealed that the venom contains 123 components, and the MS/MS analysis resulted in 33 full sequences of peptide components. The two main peptides, α-scoliidine (DYVTVKGFSPLR) and β-scoliidine (DYVTVKGFSPLRKA), present homology with the bradykinin C-terminal. Despite this, both peptides did not behave as substrates or inhibitors of ACE, indicating that they do not interact with this metallopeptidase. In further studies, β-scoliidine, but not α -scoliidine, showed protective effects against oxidative stress-induced neurotoxicity in PC12 cells through integrity and metabolism cell assays. Interestingly, β-scoliidine has the extension of the KA dipeptide at the C-terminal in comparison with α-scoliidine. Conclusion Comprehensive LC-MS and MS/MS analyses from the Scolia decorata ventralis venom displayed the component profile of this venom. β-scoliidine showed an effective cytoprotective effect, probably due to the observed increase in the number of cells. This is the first report of solitary wasp venom peptides showing neuroprotective activity.(AU)


Subject(s)
Animals , Peptides/classification , Wasp Venoms , Wasps/metabolism , Neuroprotection , Oxidative Stress , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
3.
J. venom. anim. toxins incl. trop. dis ; 26: e20200007, 2020. graf
Article in English | LILACS, VETINDEX | ID: biblio-1135143

ABSTRACT

Pathogenesis of Bothrops envenomations is complex and despite numerous studies on the effects of this snake venom on various biological systems, relatively little is known about such effects on the male reproductive system. In the present study, the toxicological outcomes of the low molecular weight fraction (LMWF) of B. jararaca snake venom - containing a range of bioactive peptides - were investigated on the dynamics and structure of the seminiferous epithelium and 15P-1 Sertoli cells viability. Methods: LMWF (5 µg/dose per testis) venom was administered in male Swiss mice by intratesticular (i.t.) injection. Seven days after this procedure, the testes were collected for morphological and morphometric evaluation, distribution of claudin-1 in the seminiferous epithelium by immunohistochemical analyses of testes, and the nitric oxide (NO) levels were evaluated in the total extract of the testis protein. In addition, the toxicological effects of LMWF and crude venom (CV) were analyzed on the 15P-1 Sertoli cell culture. Results: LMWF induced changes in the structure and function of the seminiferous epithelium without altering claudin-1 distribution. LMWF effects were characterized especially by lost cells in the adluminal compartment of epithelium (spermatocytes in pachytene, preleptotene spermatocytes, zygotene spermatocytes, and round spermatid) and different stages of the seminiferous epithelium cycle. LMWF also increased the NO levels in the total extract of the testis protein and was not cytotoxic in concentrations and time tested in the present study. However, CV showed cytotoxicity at 10 μg/mL from 6 to 48 h of treatment. Conclusions: The major finding of the present study was that the LMWF inhibited spermatozoa production; principally in the spermiogenesis stage without altering claudin-1 distribution in the basal compartment. Moreover, NO increased by LMWF induce open of complexes junctions and release the germ cells of the adluminal compartment to the seminiferous tubule.(AU)


Subject(s)
Animals , Male , Peptides , Seminiferous Epithelium , Snake Venoms , Spermatogenesis , Bothrops , Biological Products
4.
Conscientiae saúde (Impr.) ; 14(3): 402-409, 30 set. 2015.
Article in Portuguese | LILACS | ID: biblio-2061

ABSTRACT

Introdução: A qualidade dos produtos em farmácias de manipulação é determinada pela Agência Nacional de Vigilância Sanitária (ANVISA), mas os métodos descritos podem não ser adequados para analisar seus aspectos físico-químicos. Objetivo: Comparar aspectos físico-químicos da glucosamina sulfato de dois diferentes fornecedores com análises realizadas na farmácia de manipulação. Métodos: As características organolépticas, pH, solubilidade e densidade da glucosamina (n=50) dos fornecedores foram analisadas conforme descrito na Farmacopeia Brasileira e Compêndio Oficial e comparados aos laudos técnicos dos produtos adquiridos. Usaram-se os testes de Kolmogorov-Smirnov, coeficiente de correlação intraclasse (CCI) e Bland-Altman. Resultados: A análise de CCIevidenciou baixa reprodutibilidade para o teste de pH e densidade, e a análise de Bland-Altman demonstrou que os fornecedores subestimavam ou superestimavam os valores de pH e densidade em relação à farmácia. Conclusão: Os aspectos físico-químicos estão adequados conforme orientações da Anvisa, mas novas técnicas mais sensíveis devem ser utilizadas para garantir a qualidade da glucosamina nas formulações.


Introduction: The raw materials quality in the manipulation pharmacies are determined by Brazilian Health Surveillance Agency (ANVISA), but the protocols described may not be appropriate to analyze their physicochemical properties. Objective: To compare the physicochemical properties of glucosamine sulfate from two different suppliers with results obtained in the manipulation pharmacy. Methods: The organoleptic characteristics, pH, solubility and density of glucosamine samples (n=50) were analyzed according to the Brazilian Pharmacopoeia and Official Compendium and compared the technical reports of the suppliers. The results were analyzed by the Kolmogorov-Smirnov test, intraclass correlation coefficient (CCI) and Bland-Altman. Results: CCI analyses showed low reproducibility for pH and density test in the samples tested. In addition, Bland-Altman analysis indicated pH values and density of suppliers were underestimated or overestimated compared to the pharmacy. Conclusion: Physicochemical properties of glucosamine are appropriate according to Anvisa specifications, but new more sensitive techniques should be employed to ensure the glucosamine quality in the formulations.


Subject(s)
Quality Control , Glucosamine/analysis , Drug Compounding , Good Manipulation Practices , Glucosamine/pharmacology , Glucosamine/chemistry
5.
J. venom. anim. toxins incl. trop. dis ; 21: 27, 31/03/2015. tab, ilus, graf
Article in English | LILACS, VETINDEX | ID: biblio-954771

ABSTRACT

Background Considering the similarity between the testis-specific isoform of angiotensin-converting enzyme and the C-terminal catalytic domain of somatic ACE as well as the structural and functional variability of its natural inhibitors, known as bradykinin-potentiating peptides (BPPs), the effects of different synthetic peptides, BPP-10c (<ENWPHQIPP), BPP-11e (<EARPPHPPIPP), BPP-AP (<EARPPHPPIPPAP) and captopril were evaluated in the seminiferous epithelium of male mice.Methods The adult animals received either one of the synthetic peptides or captopril (120 nmol/dose per testis) via injection into the testicular parenchyma. After seven days, the mice were sacrificed, and the testes were collected for histopathological evaluation.Results BPP-10c and BPP-AP showed an intense disruption of the epithelium, presence of atypical multinucleated cells in the lumen and high degree of seminiferous tubule degeneration, especially in BPP-AP-treated animals. In addition, both synthetic peptides led to a significant reduction in the number of spermatocytes and round spermatids in stages I, V and VII/VIII of the seminiferous cycle, thickness of the seminiferous epithelium and diameter of the seminiferous tubule lumen. Interestingly, no morphological or morphometric alterations were observed in animals treated with captopril or BPP-11e.Conclusions The major finding of the present study was that the demonstrated effects of BPP-10c and BPP-AP on the seminiferous epithelium are dependent on their primary structure and cannot be extrapolated to other BPPs.(AU)


Subject(s)
Animals , Mice , Seminiferous Epithelium , Snake Venoms , Angiotensin-Converting Enzyme Inhibitors , Bothrops , Protein Isoforms
6.
J. venom. anim. toxins incl. trop. dis ; 21: 1-9, 31/03/2015. ilus, tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1484631

ABSTRACT

Background Considering the similarity between the testis-specific isoform of angiotensin-converting enzyme and the C-terminal catalytic domain of somatic ACE as well as the structural and functional variability of its natural inhibitors, known as bradykinin-potentiating peptides (BPPs), the effects of different synthetic peptides, BPP-10c ( ENWPHQIPP), BPP-11e ( EARPPHPPIPP), BPP-AP ( EARPPHPPIPPAP) and captopril were evaluated in the seminiferous epithelium of male mice.Methods The adult animals received either one of the synthetic peptides or captopril (120 nmol/dose per testis) via injection into the testicular parenchyma. After seven days, the mice were sacrificed, and the testes were collected for histopathological evaluation.Results BPP-10c and BPP-AP showed an intense disruption of the epithelium, presence of atypical multinucleated cells in the lumen and high degree of seminiferous tubule degeneration, especially in BPP-AP-treated animals. In addition, both synthetic peptides led to a significant reduction in the number of spermatocytes and round spermatids in stages I, V and VII/VIII of the seminiferous cycle, thickness of the seminiferous epithelium and diameter of the seminiferous tubule lumen. Interestingly, no morphological or morphometric alterations were observed in animals treated with captopril or BPP-11e.Conclusions The major finding of the present study was that the demonstrated effects of BPP-10c and BPP-AP on the seminiferous epithelium are dependent on their primary structure and cannot be extrapolated to other BPPs.


Subject(s)
Male , Animals , Mice , Angiotensins , Bothrops , Seminiferous Epithelium , Enzyme Inhibitors , Crotalid Venoms
7.
J. venom. anim. toxins incl. trop. dis ; 19: 28, maio 2013. tab, graf, ilus
Article in English | LILACS, VETINDEX | ID: biblio-954709

ABSTRACT

Background The testis-specific isoform of angiotensin-converting enzyme (tACE) is exclusively expressed in germ cells during spermatogenesis. Although the exact role of tACE in male fertility is unknown, it clearly plays a critical function in spermatogenesis. The dipeptidase domain of tACE is identical to the C-terminal catalytic domain of somatic ACE (sACE). Bradykinin potentiating peptides (BPPs) from snake venoms are the first natural sACE inhibitors described and their structure-activity relationship studies were the basis for the development of antihypertensive drugs such as captopril. In recent years, it has been showed that a number of BPPs - including BPP-10c - are able to distinguish between the N- and C-active sites of sACE, what is not applicable to captopril. Considering the similarity between tACE and sACE (and since BPPs are able to distinguish between the two active sites of sACE), the effects of the BPP-10c and captopril on the structure and function of the seminiferous epithelium were characterized in the present study. BPP-10c and captopril were administered in male Swiss mice by intraperitoneal injection (4.7 μmol/kg for 15 days) and histological sections of testes were analyzed. Classification of seminiferous tubules and stage analysis were carried out for quantitative evaluation of germ cells of the seminiferous epithelium. The blood-testis barrier (BTB) permeability and distribution of claudin-1 in the seminiferous epithelium were analyzed by hypertonic fixative method and immunohistochemical analyses of testes, respectively. Results The morphology of seminiferous tubules from animals treated with BPP-10c showed an intense disruption of the epithelium, presence of atypical multinucleated cells in the lumen and degenerated germ cells in the adluminal compartment. BPP-10c led to an increase in the number of round spermatids and total support capacity of Sertoli cell in stages I, V, VII/VIII of the seminiferous epithelium cycle, without affecting BTB permeability and the distribution of claudin-1 in the seminiferous epithelium. Interestingly, no morphological or morphometric alterations were observed in animals treated with captopril. Conclusions The major finding of the present study was that BPP-10c, and not captopril, modifies spermatogenesis by causing hyperplasia of round spermatids in stages I, V, and VII/VIII of the spermatogenic cycle.(AU)


Subject(s)
Animals , Peptides , Seminiferous Epithelium , Seminiferous Tubules , Snake Venoms , Bradykinin , Bothrops/anatomy & histology
8.
Article in English | LILACS-Express | LILACS, VETINDEX | ID: biblio-1484548

ABSTRACT

Background The testis-specific isoform of angiotensin-converting enzyme (tACE) is exclusively expressed in germ cells during spermatogenesis. Although the exact role of tACE in male fertility is unknown, it clearly plays a critical function in spermatogenesis. The dipeptidase domain of tACE is identical to the C-terminal catalytic domain of somatic ACE (sACE). Bradykinin potentiating peptides (BPPs) from snake venoms are the first natural sACE inhibitors described and their structure-activity relationship studies were the basis for the development of antihypertensive drugs such as captopril. In recent years, it has been showed that a number of BPPs - including BPP-10c - are able to distinguish between the N- and C-active sites of sACE, what is not applicable to captopril. Considering the similarity between tACE and sACE (and since BPPs are able to distinguish between the two active sites of sACE), the effects of the BPP-10c and captopril on the structure and function of the seminiferous epithelium were characterized in the present study. BPP-10c and captopril were administered in male Swiss mice by intraperitoneal injection (4.7 mol/kg for 15 days) and histological sections of testes were analyzed. Classification of seminiferous tubules and stage analysis were carried out for quantitative evaluation of germ cells of the seminiferous epithelium. The blood-testis barrier (BTB) permeability and distribution of claudin-1 in the seminiferous epithelium were analyzed by hypertonic fixative method and immunohistochemical analyses of testes, respectively. Results The morphology of seminiferous tubules from animals treated with BPP-10c showed an intense disruption of the epithelium, presence of atypical multinucleated cells in the lumen and degenerated germ cells in the adluminal compartment. BPP-10c led to an increase in the number of round spermatids and total support capacity of Sertoli cell in stages I, V, VII/VIII of the seminiferous epithelium cycle, without affecting BTB permeability and the distribution of claudin-1 in the seminiferous epithelium. Interestingly, no morphological or morphometric alterations were observed in animals treated with captopril. Conclusions The major finding of the present study was that BPP-10c, and not captopril, modifies spermatogenesis by causing hyperplasia of round spermatids in stages I, V, and VII/VIII of the spermatogenic cycle.

SELECTION OF CITATIONS
SEARCH DETAIL